
First, there is a simple hardware issue that may prevent communications on the RS-485

bus: There needs to be a 100 OHM Termination resistor between D+ and D- at one of the

cable endpoints. I did not see that in your cable setup. This is mentioned on the DKN oven

manuals, as below:

The communication protocol documentation, although extensive, can lead to some confusion

on the basics (like binary vs. ASCII, etc.). There is nothing better to explain it than to show

a capture of the RS485 bus traffic during communications between a PC host and an RS485

Target Device. For this, I use two RS485 adapters connected to the same PC: one adapter is

a RS-232 to RS-485 converter (with external AC/DC adapter) connected to the PC via an

USB to RS-232 dongle. The other adapter is a simple USB to RS-485, connected to the

same PC.

Software setup:

The communication protocol used by the Yamato furnaces is the Toho protocol. Toho makes

available a simple, easy to use Windows application that sends and receives commands

using their protocol. I recommend installing it on the test PC and assigning it to one of the

RS-485 adapters. The English version of the Windows application (with English manual) can

be downloaded from

here: http://r7.s901v.smilestart.ne.jp/toho/english/ComSamp3Ver0102Setup.zip

I used also another serial communication application (assigned to the secondary RS-485

adapter), to simulate the furnace behavior and to generate traffic back to the "master" RS-

485 adapter being used by the Toho application. It is called Real term and the version I'm

using, although a bit old, can be downloaded from here:

http://www.i2cchip.com/realterm/old_versions/Realterm_2.0.0.70_SignedWrapper_setup.e

xe

HyperTerminal will not work properly as you need to send/receive binary numbers over the

RS-485 interface that are non-printable ASCII characters. Better suited communication

applications should be used.

So, Toho's ComSamp3 app sends user typed commands to the "furnace" after appending it

with a calculated BCC byte (XOR of previous bytes), and validates the "furnace" replies,

printing everything on the main screen. To make it easier to input a command string, the

Application converts the user typed "(" character to the non-printable 0x02 character.

Likewise, it converts the ")" character into the non-printable 0x03 character. When the

application receives these same binary characters, it converts them to "(" and ")" so that

they can be printed on the screen.

http://r7.s901v.smilestart.ne.jp/toho/english/ComSamp3Ver0102Setup.zip
http://www.i2cchip.com/realterm/old_versions/Realterm_2.0.0.70_SignedWrapper_setup.exe
http://www.i2cchip.com/realterm/old_versions/Realterm_2.0.0.70_SignedWrapper_setup.exe

Also, if you are creating the command strings manually instead of using Toho's application,

you need to calculate and append the BCC byte yourself. I wrote an MS Excel spreadsheet

with a formula to calculate the BCC byte from a data set but I can't find it right now...

 Screen shots:

Toho application: Command sent is a Write request to device 01, register SV1, value =

"000025". No BCC byte in this setup

 "Furnace" reply (received data) is: Device 01, ACK.

RealTerm Application emulating Furnace:

First screen shot shows

furnace received bytes in

Yellow and manually sent

bytes in Green.

(Hex representation with

added spaces between

received and transmitted

bytes.)

Second screen shot shows Binary representation of received and transmitted characters, as

well as serial port setup (simulating the Furnace behavior). This clarifies the Binary vs ASCII

question, hopefully.

Third screen shot shows the manually crafted 6 byte reply from the "furnace", represented

in Hex notation 0xnn.

